Focus Areas from CSB:

• Classroom Strategies
• Math Anxiety and Motivation
• Effective Evaluation and Assessment

Classroom Strategies

• Teaching Practices
 – We have many suggestions
 – But first, some research findings
 • Research will help us frame our suggestions
 • Research results may help you understand your students’ difficulties are not unique
Research Findings

• Deaf students may not be skilled at:
 – Metacognition (thinking about thinking)
 – Monitoring their own understanding
 – Recognizing what they do not know
 – Understanding the whole instead of individual parts
 – Understanding the purpose of a task
 – Relating new material to existing knowledge

Research Findings

• Deaf students may not be skilled at:
 – Making inferences
 – Transferring and applying what they know
 – Sorting important from unimportant information: sketching difficulties
 – Knowing when to ask for help and what questions to ask
 – Reading and expressing ideas in writing

Classroom Strategies

• In spite of research findings, we are optimistic
 – We take satisfaction in moving students along mathematically
 – We will share some of the more successful strategies used in our classes.
What We Value and Encourage (Target Values)

- Problem solving, reasoning, divergent thinking
- Technology, calculators, reasonableness of results
- Models, diagrams, sketching
- Symbol use and meaning
- Lab activities and reports
- Language and communication
- Study skills and use of a text
- Positive attitude toward learning, including persistence.

Strategy #1: Emphasize and Practice Language

- Reinforce the language of instruction since it may not be the student’s first language
- Make connections between the language of mathematics, sign language and the language used in your academic setting
- Discuss vocabulary
 - Math vocabulary including variations
 - Everyday vocabulary in a mathematical context
 - Non-technical vocabulary
- Key words? Be careful!

Strategy #1: Emphasize and Practice Language (cont.)

- Use questions to summarize. Encourage sentences and details.
 - What did we study yesterday (or today)?
 - Which homework problem was difficult? Why was it difficult?
 - Why does the sign for (XXX) make sense?
 - How do you explain (XXX) to a friend?
 - What comparisons can be made between two given quantities?
Strategy # 2: Encourage Sketching
- Visuals should be part of student’s mental resources
- Sketches give students a frame of reference and illustrate their thinking
- As instructors model sketching, students can see what is the essence of a problem
- Instructors’ knowledge of visuals in previous courses can be used to make connections to new material.

Strategy # 3: Use Quality Materials
- Videotapes, WWW, and Text Books
 - Issues
 - Content
 - Pace
 - Mathematical accuracy
 - Language accessibility
 - Expense
- In-house materials
- Texts and supporting material
 - Learning to use a text: target value

Strategy # 4: Improving Retention of Knowledge, Skills
- Use a spiral approach
- Introduce new topics with a mention of what they learned previously
- Prod with clues when students ‘forget’
- Keep spiraling positive--you will enjoy teaching more, too
- Calculators can help
Strategy #5: Tutoring

Math Anxiety and Motivation

- Use of a variety of assessment methods, not just tests
- Convey your satisfaction with student progress
- Address avoidance behaviors
- Use activities that you find interesting
- Use problems that are meaningful (from the technical programs)

Assessment and Evaluation
Underlying Principles

- We strive to maintain standards without causing student failure
- We recognize that there is a thin line between enabling and preventing
- We know that most of our students do not pursue careers in mathematics
Assessment and Evaluation

• Our assessment of student work reflects established standards of mathematics education in the USA
 – Tests, quizzes
 – Lab reports
 – Group work
 – Presentations
 – Homework assignments

Assessment and Evaluation

• Assessment of student learning can be difficult because of language factors
 – Students may not be able to communicate all they know
 – Students may not read well
 – We might assume students know more (or less) than they really do

Mathematics Placement

• Use of selected questions to target the ‘heart’ of a course
• Use results to place in a course where student can be successful and challenged
• Percents used for placement may seem low or arbitrary
• Student interviews can help in placement, as can academic record
• “But I already had algebra.”