Considerations When Developing Technical Programs for Deaf Students

By: Dr. T. Raco

Supply and demand, changing technologies, industry trends, emerging careers, niche markets, work force trends, competition, and student demographics. These are some of the important considerations for educational institutions when embarking on the development of new technical career programs for deaf students. They serve as the foundation for building viable and flexible curricula that not only lead students to employment but also ensure ample opportunity for job security and mobility. Institutions should provide students with a range of career options, from those that primarily develop manual, machine-based skills to the more creative and high tech problem solving competencies. Examples of each include integrated machining/tool and dye programs as well as computer design, information technology, or environmental laboratory testing programs.

Institutions should also consider conducting periodic marketplace scanning to determine emerging trends in those areas currently represented in their program portfolios as well as new employment opportunities that might lead to future additions to their portfolios. At the same time, institutions must not be averse to discontinuing existing programs if market scanning reveals negative signals about the future of employment opportunities for these programs. This is never a pleasant or easy task to engage in because of the impact it can have on graduates or with the displacement of staff who support the programs. However, because deaf students often are confronted by limitations when seeking alternative employment outside their fields, it becomes more essential for them to have access to career training in areas assured of long term employment and security.

NTID is engaged in a market place scanning initiative, and showcases its work on the following web site: http://www.ntid.rit.edu/msc/

In any technical curriculum for deaf students, it is important to prepare the graduate with skills beyond technical competencies. These include communication skills such as writing (paper as well as email), social and work conversation etiquette; also problem solving, teamwork, time management, and self-advocacy skills are important. These can be built into the overall curriculum, as a part of the technical studies, or within the college’s general education curriculum which complements technical programs.
All technical programs should include a cooperative education or internship requirement. This provides students with the opportunity to place their newly developed skills in the context of the real work setting, well as provide valuable feedback to faculty about the match between the skills offered in the program and those required on the job.

Finally, technical curricula should be as closely tied to the changes that emerge in the industry as soon as possible to the time the changes occur. For this to effectively occur, industry partners should be affiliated with each program as members of advisory groups, and meet at the request of the technical programs to provide feedback on these changes.

Periodic graduate feedback can also be helpful in gauging the satisfaction of former students with their programs in topics ranging from salaries to upward mobility as well as professional development opportunities associated with their jobs.